題意:
(from luckycat)
解法:
參考 Morris http://mypaper.pchome.com.tw/zerojudge/post/1326314489。
要利用對數的性質。
TAG: Math, BigNum
注意:
程式碼:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Tittle: 10329 - Combinatorial Expression | |
* Author: Cheng-Shih, Wong | |
* Date: 2015/06/28 | |
*/ | |
import java.util.*; | |
import java.math.*; | |
public class Main { | |
public static final int P = 5000; | |
public static ArrayList<Integer> prime = new ArrayList<Integer>(); | |
public static HashMap<Integer,Integer> p2n = new HashMap<Integer,Integer>(); | |
public static boolean[] isprime = new boolean[P+5]; | |
public static ArrayList<ArrayList<Integer>> factNum = new ArrayList<ArrayList<Integer>>(); | |
public static ArrayList<ArrayList<Integer>> factVal = new ArrayList<ArrayList<Integer>>(); | |
public static int[] poly = new int[1000]; | |
public static void main( String[] args ) { | |
int N, M; | |
int n, r; | |
int v; | |
int rs; | |
double dig; | |
BigInteger ans; | |
Scanner input = new Scanner(System.in); | |
init(); | |
// input | |
while( input.hasNext() ) { | |
N = input.nextInt(); | |
M = input.nextInt(); | |
for( int i=0; i<prime.size(); ++i ) | |
poly[i] = 0; | |
// solve | |
while( N-- > 0 ) { | |
n = input.nextInt(); | |
r = input.nextInt(); | |
if( n-r < r ) r = n-r; | |
calc( n, r, true ); | |
} | |
while( M-- > 0 ) { | |
n = input.nextInt(); | |
r = input.nextInt(); | |
if( n-r < r ) r = n-r; | |
calc( n, r, false ); | |
} | |
// check & output | |
rs = 1; | |
for( int i=0; i<prime.size(); ++i ) if( poly[i]<0 ) { | |
rs = 0; | |
break; | |
} | |
if( rs == 1 ) { | |
dig = 0; | |
for( int i=0; i<prime.size(); ++i ) if( poly[i]!=0 ) | |
dig += poly[i]*Math.log10(prime.get(i)); | |
if( dig >= 100.0 ) rs = -1; | |
} | |
if( rs == 1 ) { | |
ans = BigInteger.ONE; | |
for( int i=0; i<prime.size(); ++i ) if( poly[i]!=0 ) | |
ans = ans.multiply( BigInteger.valueOf(prime.get(i)).pow(poly[i]) ); | |
System.out.println(ans.toString()); | |
} else | |
System.out.println(rs); | |
} | |
input.close(); | |
} | |
public static void calc( int n, int r, boolean numerator ) { | |
int a = n; | |
int b = 1; | |
while( r-- > 0 ) { | |
for( int i=0; i<factNum.get(a).size(); ++i ) | |
poly[p2n.get(factVal.get(a).get(i))] += (numerator ? factNum.get(a).get(i):-factNum.get(a).get(i)); | |
for( int i=0; i<factNum.get(b).size(); ++i ) | |
poly[p2n.get(factVal.get(b).get(i))] += (numerator ? -factNum.get(b).get(i):factNum.get(b).get(i)); | |
--a; | |
++b; | |
} | |
} | |
public static void init() { | |
int tmp, v, cnt; | |
// find primes | |
for( int i=0; i<=P; ++i ) | |
isprime[i] = true; | |
isprime[0]=isprime[1]=true; | |
for( int i=2; i<=P; ++i ) if( isprime[i] ) { | |
p2n.put(i,prime.size()); | |
prime.add(i); | |
for( int j=i*i; j<=P; j+=i ) | |
isprime[j] = false; | |
} | |
// make factor table | |
for( int i=0; i<=P; ++i ) { | |
factNum.add( new ArrayList<Integer>() ); | |
factVal.add( new ArrayList<Integer>() ); | |
} | |
for( int i=2; i<=P; ++i ) { | |
tmp = i; | |
for( int j=0; j<prime.size(); ++j ) { | |
v = prime.get(j); | |
if( v*v > tmp ) break; | |
cnt = 0; | |
while( tmp%v == 0 ) { | |
tmp /= v; | |
++cnt; | |
} | |
if( cnt > 0 ) { | |
factNum.get(i).add(cnt); | |
factVal.get(i).add(v); | |
} | |
} | |
if( tmp != 1 ) { | |
factNum.get(i).add(1); | |
factVal.get(i).add(tmp); | |
} | |
} | |
} | |
} |
沒有留言:
張貼留言
任何意見都樂意傾聽