題意:
(from luckycat)
解法:
水題,但是大家都說 n 有可能小於 0 ,題目也沒講= =。
總之就是定義 fact( 0 ) = 0 * fact( -1 ),所以 fact( -1 ) = fact( 0 ) / 0 = INF。
所以當 n 為負時,若是奇數答案就是無窮大(Overflow);若是偶數答案就是負無窮大(Underflow)。
TAG: ad hoc
注意:
程式碼:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Tittle: 10323 - Factorial! You Must be Kidding!!! | |
* Author: Cheng-Shih, Wong | |
* Date: 2015/06/17 | |
*/ | |
// include files | |
#include <bits/stdc++.h> | |
using namespace std; | |
// definitions | |
#define FOR(i,a,b) for( int i=(a),_n=(b); i<=_n; ++i ) | |
#define clr(x,v) memset( x, v, sizeof(x) ) | |
typedef long long ll; | |
// declarations | |
int n; | |
ll fact[15]; | |
// functions | |
// main function | |
int main( void ) | |
{ | |
fact[0] = 1LL; | |
FOR( i, 1, 13 ) | |
fact[i] = fact[i-1]*i; | |
// input | |
while( scanf( "%d", &n )==1 ) { | |
if( n < 0 ) { | |
if( ((-n)&1)==1 ) puts("Overflow!"); | |
else puts("Underflow!"); | |
} else { | |
if( n<=7 ) puts("Underflow!"); | |
else if( n>=14 ) puts("Overflow!"); | |
else printf( "%lld\n", fact[n] ); | |
} | |
} | |
return 0; | |
} |
沒有留言:
張貼留言
任何意見都樂意傾聽