題意:
(from luckycat)
解法:
假設一串有 m 項的數列首項為 a 滿足此 m 項的和為 n ,即是 (a+(a+m-1))*m/2 = n ,
則可以知道 2n = (2a + m -1)*m,分析得知 若 m 是偶數,則 (2a+m-1) 是奇數;反之,若 m 是奇數,則 (2a+m-1) 是偶數。
也就是說 若 2n 能夠拆成 某個奇數乘某個偶數,就能與一組數列和相等。
也就是找出 2n 有幾個 "奇數的因數",也就是 n 有幾個 "奇數的因數"。
把 n 質因數分解,算出有幾個 奇數的因數 即是答案。
TAG: Math
注意:
程式碼:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Tittle: 10290 - {Sum+=i++} to Reach N | |
* Author: Cheng-Shih, Wong | |
* Date: 2015/06/11 | |
*/ | |
// include files | |
#include <bits/stdc++.h> | |
using namespace std; | |
// definitions | |
#define FOR(i,a,b) for( int i=(a),_n=(b); i<=_n; ++i ) | |
#define clr(x,v) memset( x, v, sizeof(x) ) | |
#define N 30000005 | |
typedef long long ll; | |
typedef vector<ll> VLL; | |
// declarations | |
ll n; | |
bool isp[N]; | |
VLL pm; | |
int ans; | |
// functions | |
void init( void ) | |
{ | |
pm.clear(); | |
clr( isp, true ); | |
isp[0] = isp[1] = false; | |
for( ll i=2; i<=3e7; ++i ) if( isp[i] ) { | |
pm.push_back(i); | |
for( ll j=i*i; j<=3e7; j+=i ) | |
isp[j] = false; | |
} | |
} | |
void solve( void ) | |
{ | |
if( n == 0 ) { | |
ans = 0; | |
return; | |
} | |
while( (n&1LL)==0LL ) n >>= 1; | |
static int cnt; | |
ans = 1; | |
for( ll v : pm ) { | |
if( v*v > n ) break; | |
if( (n%v)==0LL ) { | |
cnt = 1; | |
while( (n%v)==0 ) { | |
++cnt; | |
n /= v; | |
} | |
ans *= cnt; | |
} | |
} | |
if( n!=1LL ) ans *= 2; | |
} | |
// main function | |
int main( void ) | |
{ | |
init(); | |
// input | |
while( scanf( "%lld", &n )==1 ) { | |
solve(); | |
// output | |
printf( "%d\n", ans ); | |
} | |
return 0; | |
} |
沒有留言:
張貼留言
任何意見都樂意傾聽