題意: 有 n 個身高皆不同的人排成一排,問左邊看到 p 個人,右邊能看到 r 個人,問有幾種排列可能。
解法: 要找排列情況可聯想 DP,所以想辦法想出遞迴方程,想像當總人數為 n' 個人,左邊看的到 p' 個人,右邊看的到 r' 個人,想把最矮的人拿掉的所有情況,假設最矮的人站在第一個位子,那拿掉他之後從左邊看就會少一個人,如果最矮的人站在最後一個位子,拿掉他後從右邊看也會少一個,如果最矮的人站在中間任何一個位子,拿掉他之後,從左邊或右邊看人數不變。
dp[n'][p'][r'] =
{ 1, if n' = p' = r' = 1
{ dp[n'-1][p'-1][r'] + dp[n'-1][p'][r'] + dp[n'-1][p'][r'-1], if n' > 1, 1 <= p', r' <= n'
TAG: DP
注意:
程式碼:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Tittle: 10128 - Queue | |
* Author: Cheng-Shih, Wong | |
* Date: 2015/04/04 | |
*/ | |
// include files | |
#include <iostream> | |
#include <cstdio> | |
#include <cstring> | |
using namespace std; | |
// definitions | |
#define FOR(i,a,b) for( int i=(a),_n=(b); i<=_n; ++i ) | |
#define clr(x,v) memset( x, v, sizeof(x) ) | |
#define N 15 | |
// declarations | |
int t; | |
int n, p, r; | |
int dp[N][N][N]; | |
// functions | |
// main function | |
int main( void ) | |
{ | |
// solve | |
clr( dp, 0 ); | |
dp[1][1][1] = 1; | |
FOR( i, 1, 12 ) FOR( j, 1, i ) FOR( k, 1, i ) if( dp[i][j][k] ) { | |
dp[i+1][j+1][k] += dp[i][j][k]; | |
dp[i+1][j][k+1] += dp[i][j][k]; | |
dp[i+1][j][k] += (i-1)*dp[i][j][k]; | |
} | |
// input | |
scanf( "%d", &t ); | |
while( t-- ) { | |
scanf( "%d%d%d", &n, &p, &r ); | |
// output | |
printf( "%d\n", dp[n][p][r] ); | |
} | |
return 0; | |
} |
沒有留言:
張貼留言
任何意見都樂意傾聽