題意: 給定一整數點的多邊形,求與此多邊形的形狀相同的最小多邊形及其M倍以內的多邊形內部所包含的整數點點數總和。
解法: 須先刪除共線的點,然後將多邊形的一頂點平移至原點,接著求出所有邊的x變量、y變量的最大公因數D,接著將所有座標除以D後即得到最小相似多邊形,接著可以皮克定理(Pick's Theorem) A = i + B/2 - 1 ,A為多邊形的面積,i為多邊行內部整數點點數,B為多邊形邊上點數,可應用此定理推出答案之公式,ans = S1*(m*(m+1)*(2m+1)/6) - (B/2)*(m*(m+1)/2) + m。
TAG: Computational Geometry
注意: 這題的測資非常的坑人,答案會趨近於2^64-1,所以最後算出來的答案非常容易爆炸,需要配合unsigned long long及long long使用。
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* Author: Cheng-Shih Wong | |
* Prob. name: Jacquard Circuits | |
* Prob. source: World Final 2007 | |
* Prob. URL: http://goo.gl/wT9O6B | |
* Prob. catogory: Computaional Geometry | |
* Date: 2014/05/18 | |
*/ | |
#include <iostream> | |
#include <cstdio> | |
#include <cstring> | |
#include <vector> | |
using namespace std; | |
typedef unsigned long long ULL; | |
typedef long long LL; | |
LL ABS( LL x ) { return (x<0 ? -x:x); } | |
struct Point { | |
int x, y; | |
Point( int _x = 0, int _y = 0 ): | |
x(_x), y(_y) {} | |
const Point operator-( const Point &op ) const { | |
return Point( x-op.x, y-op.y ); | |
} | |
const LL operator^( const Point &op ) const { | |
return ((LL)x*op.y-(LL)y*op.x); | |
} | |
}; | |
typedef vector<Point> Polygon; | |
int n; | |
ULL m; | |
Polygon polygon; | |
Point pn[1005]; | |
ULL B; | |
int ti = 1; | |
const LL polygonArea( const Polygon &p ) | |
{ | |
int i, s = p.size(); | |
ULL ret = 0LL; | |
for( i = 0; i < s; ++i ) ret += p[i]^p[(i+1)%s]; | |
return ABS(ret); | |
} | |
int gcd( int a, int b ) | |
{ | |
return (!b ? a:gcd(b,a%b)); | |
} | |
void init( void ) | |
{ | |
static int i, ldPoint, vn, d; | |
static Point tmpp; | |
for( i = 0; i < n; ++i ) scanf( "%d%d", &pn[i].x, &pn[i].y ); | |
ldPoint = 0; | |
for( i = 1; i < n; ++i ) | |
if( pn[i].y < pn[ldPoint].y || (pn[i].y==pn[ldPoint].y && pn[i].x<pn[ldPoint].x) ) ldPoint = i; | |
polygon.clear(); | |
polygon.push_back(pn[ldPoint]); | |
polygon.push_back(pn[(ldPoint+1)%n]); | |
for( i = 2; i < n; ++i ) { | |
vn = polygon.size(); | |
if( ((polygon[vn-1]-polygon[vn-2])^(pn[(i+ldPoint)%n]-polygon[vn-1])) == 0 ) polygon.pop_back(); | |
polygon.push_back( pn[(i+ldPoint)%n]); | |
} | |
vn = polygon.size(); | |
if( ((polygon[vn-1]-polygon[vn-2])^(pn[ldPoint]-polygon[vn-1])) == 0 ) polygon.pop_back(); | |
n = polygon.size(); | |
for( i = 1; i < n; ++i ) polygon[i] = polygon[i]-polygon[0]; | |
polygon[0] = Point(); | |
for( i = 1; i < n; ++i ) { | |
if( polygon[i].x ) d = polygon[i].x; | |
if( polygon[i].y ) d = polygon[i].y; | |
} | |
for( i = 1; i < n; ++i ) { | |
d = gcd( d, polygon[i].x ); | |
d = gcd( d, polygon[i].y ); | |
} | |
for( i = 1; i < n; ++i ) { | |
polygon[i].x /= d; polygon[i].y /= d; | |
} | |
} | |
void solve( void ) | |
{ | |
static int i; | |
static Point tmpp; | |
static ULL ans; | |
B = 0ULL; | |
for( i = 0; i < n; ++i ) { | |
tmpp = polygon[(i+1)%n]-polygon[i]; | |
if( !tmpp.x || !tmpp.y ) B += ABS(tmpp.x)+ABS(tmpp.y); | |
else B += gcd( ABS(tmpp.x), ABS(tmpp.y) ); | |
} | |
ans = (polygonArea(polygon)*((((m*(m+1))/2)*(2*m+1))/3))/2-(B*m*(m+1))/4+m; | |
printf( "Case %d: %llu\n", ti++, ans ); | |
} | |
int main( void ) | |
{ | |
//freopen( "p2395.in", "r", stdin ); | |
while( scanf( "%d%llu", &n, &m ) == 2 && (n||m) ) { | |
init(); | |
solve(); | |
} | |
return 0; | |
} |
沒有留言:
張貼留言
任何意見都樂意傾聽