我是個對電腦科學有興趣的學生,我會貼上我的學習歷程及生活心情,也請大大們多多指教。 :)

2014年5月18日 星期日

[World Final 2007][Uva Live Archive] 2395 - Jacquard Circuits

題目網址: http://goo.gl/wT9O6B

題意: 給定一整數點的多邊形,求與此多邊形的形狀相同的最小多邊形及其M倍以內的多邊形內部所包含的整數點點數總和。



解法: 須先刪除共線的點,然後將多邊形的一頂點平移至原點,接著求出所有邊的x變量、y變量的最大公因數D,接著將所有座標除以D後即得到最小相似多邊形,接著可以皮克定理(Pick's Theorem) A = i + B/2 - 1 ,A為多邊形的面積,i為多邊行內部整數點點數,B為多邊形邊上點數,可應用此定理推出答案之公式,ans = S1*(m*(m+1)*(2m+1)/6) - (B/2)*(m*(m+1)/2) + m。

TAG: Computational Geometry

注意: 這題的測資非常的坑人,答案會趨近於2^64-1,所以最後算出來的答案非常容易爆炸,需要配合unsigned long long及long long使用。

程式碼:
/* Author: Cheng-Shih Wong
* Prob. name: Jacquard Circuits
* Prob. source: World Final 2007
* Prob. URL: http://goo.gl/wT9O6B
* Prob. catogory: Computaional Geometry
* Date: 2014/05/18
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
typedef unsigned long long ULL;
typedef long long LL;
LL ABS( LL x ) { return (x<0 ? -x:x); }
struct Point {
int x, y;
Point( int _x = 0, int _y = 0 ):
x(_x), y(_y) {}
const Point operator-( const Point &op ) const {
return Point( x-op.x, y-op.y );
}
const LL operator^( const Point &op ) const {
return ((LL)x*op.y-(LL)y*op.x);
}
};
typedef vector<Point> Polygon;
int n;
ULL m;
Polygon polygon;
Point pn[1005];
ULL B;
int ti = 1;
const LL polygonArea( const Polygon &p )
{
int i, s = p.size();
ULL ret = 0LL;
for( i = 0; i < s; ++i ) ret += p[i]^p[(i+1)%s];
return ABS(ret);
}
int gcd( int a, int b )
{
return (!b ? a:gcd(b,a%b));
}
void init( void )
{
static int i, ldPoint, vn, d;
static Point tmpp;
for( i = 0; i < n; ++i ) scanf( "%d%d", &pn[i].x, &pn[i].y );
ldPoint = 0;
for( i = 1; i < n; ++i )
if( pn[i].y < pn[ldPoint].y || (pn[i].y==pn[ldPoint].y && pn[i].x<pn[ldPoint].x) ) ldPoint = i;
polygon.clear();
polygon.push_back(pn[ldPoint]);
polygon.push_back(pn[(ldPoint+1)%n]);
for( i = 2; i < n; ++i ) {
vn = polygon.size();
if( ((polygon[vn-1]-polygon[vn-2])^(pn[(i+ldPoint)%n]-polygon[vn-1])) == 0 ) polygon.pop_back();
polygon.push_back( pn[(i+ldPoint)%n]);
}
vn = polygon.size();
if( ((polygon[vn-1]-polygon[vn-2])^(pn[ldPoint]-polygon[vn-1])) == 0 ) polygon.pop_back();
n = polygon.size();
for( i = 1; i < n; ++i ) polygon[i] = polygon[i]-polygon[0];
polygon[0] = Point();
for( i = 1; i < n; ++i ) {
if( polygon[i].x ) d = polygon[i].x;
if( polygon[i].y ) d = polygon[i].y;
}
for( i = 1; i < n; ++i ) {
d = gcd( d, polygon[i].x );
d = gcd( d, polygon[i].y );
}
for( i = 1; i < n; ++i ) {
polygon[i].x /= d; polygon[i].y /= d;
}
}
void solve( void )
{
static int i;
static Point tmpp;
static ULL ans;
B = 0ULL;
for( i = 0; i < n; ++i ) {
tmpp = polygon[(i+1)%n]-polygon[i];
if( !tmpp.x || !tmpp.y ) B += ABS(tmpp.x)+ABS(tmpp.y);
else B += gcd( ABS(tmpp.x), ABS(tmpp.y) );
}
ans = (polygonArea(polygon)*((((m*(m+1))/2)*(2*m+1))/3))/2-(B*m*(m+1))/4+m;
printf( "Case %d: %llu\n", ti++, ans );
}
int main( void )
{
//freopen( "p2395.in", "r", stdin );
while( scanf( "%d%llu", &n, &m ) == 2 && (n||m) ) {
init();
solve();
}
return 0;
}

沒有留言:

張貼留言

任何意見都樂意傾聽