題意: 你想從家裡出發至學校,題目給定N條馬路,馬路的兩端點皆為整數點,且馬路只會是水平或鉛直,但是你可以任意的走(不必在整數點上),但是不能橫向穿越兩條馬路交點(誰敢直接對角過馬路阿XDDDD),因為你怕危險,從家裡走至學校的路途中想經過盡量少的馬路,問最少需要多少馬路。
解法: 看到此種題目,第一件事通常是先離散化,原本題目為從起點至終點,穿過最少的線段,離散化後,題目則變為從起點點格至終點點格,穿過最少的點格牆。可以想像從起點倒水,若水被牆擋住就拆掉最外面那道牆,一直拆到水碰到終點,直接使用BFS來拆牆。
(PS: 我有看到較好的方法,是把離散化後的圖,若下個點是馬路則邊權重為1,若非,則是0,求從起點至終點的最短路徑。)
TAG: BFS, 離散化
注意: NA
程式碼:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <iostream> | |
#include <cstdio> | |
#include <cstring> | |
#include <algorithm> | |
#include <queue> | |
using namespace std; | |
#define N 510 | |
#define clr(x,v) memset( x, v, sizeof(x) ) | |
struct Point { | |
int x, y; | |
Point( int _x = 0, int _y = 0 ): x(_x), y(_y) {} | |
const bool operator==( const Point &op ) const { return (x==op.x&&y==op.y); } | |
const Point operator+( const Point &op ) const { return Point(x+op.x,y+op.y); } | |
Point go( const int dir ) const { | |
switch( dir ) { | |
case 0: return (*this)+Point(0,1); | |
case 1: return (*this)+Point(1,0); | |
case 2: return (*this)+Point(0,-1); | |
case 3: return (*this)+Point(-1,0); | |
default: return (*this); | |
} | |
} | |
}; | |
struct State { | |
Point p; | |
int step; | |
State( Point _p = Point(), int _step = 0 ): p(_p), step(_step) {} | |
}; | |
typedef queue<Point> QP; | |
typedef queue<State> QS; | |
int n, ans, ti = 0; | |
int dx[2*N], dy[2*N]; | |
int xlen, ylen; | |
Point s, t; | |
Point st[N][2]; | |
bool isWall[2*N][2*N]; | |
bool vis[2*N][2*N]; | |
bool inWQ[2*N][2*N]; | |
bool inNWQ[2*N][2*N]; | |
QS wq; | |
QP nwq; | |
bool over; | |
int x_r2d( int x ) | |
{ | |
static int l, r, mid; | |
l = 1; r = xlen; | |
while( l <= r ) { | |
mid = (l+r)>>1; | |
if( dx[mid] == x ) return mid; | |
if( dx[mid] > x ) r = mid-1; | |
else l = mid+1; | |
} | |
} | |
int y_r2d( int y ) | |
{ | |
static int l, r, mid; | |
l = 1; r = ylen; | |
while( l <= r ) { | |
mid = (l+r)>>1; | |
if( dy[mid] == y ) return mid; | |
if( dy[mid] > y ) r = mid-1; | |
else l = mid+1; | |
} | |
} | |
void init( void ) | |
{ | |
int i, x, y; | |
Point ns, nt; | |
xlen = ylen = 0; | |
for( i = 1; i <= n; ++i ) { | |
scanf( "%d%d%d%d", &st[i][0].x, &st[i][0].y, &st[i][1].x, &st[i][1].y ); | |
dx[++xlen] = st[i][0].x; dx[++xlen] = st[i][1].x; | |
dy[++ylen] = st[i][0].y; dy[++ylen] = st[i][1].y; | |
} | |
scanf( "%d%d%d%d", &s.x, &s.y, &t.x, &t.y ); | |
dx[++xlen] = s.x; dx[++xlen] = t.x; | |
dy[++ylen] = s.y; dy[++ylen] = t.y; | |
sort( dx+1, dx+1+xlen ); | |
sort( dy+1, dy+1+ylen ); | |
xlen = unique( dx+1, dx+1+xlen )-(dx+1); | |
ylen = unique( dy+1, dy+1+ylen )-(dy+1); | |
clr( isWall, 0 ); | |
clr( vis, 0 ); | |
clr( inWQ, 0 ); | |
clr( inNWQ, 0 ); | |
over = false; | |
ans = 0; | |
for( i = nwq.size(); i; --i ) nwq.pop(); | |
for( i = wq.size(); i; --i ) wq.pop(); | |
for( i = 1; i <= n; ++i ) { | |
ns = Point( x_r2d(st[i][0].x), y_r2d(st[i][0].y) ); | |
nt = Point( x_r2d(st[i][1].x), y_r2d(st[i][1].y) ); | |
if( ns.x != nt.x ) { | |
y = ns.y; | |
if( ns.x < nt.x ) | |
for( x = ns.x; x <= nt.x; ++x ) isWall[x][y] = true; | |
else | |
for( x = nt.x; x <= ns.x; ++x ) isWall[x][y] = true; | |
} else { | |
x = ns.x; | |
if( ns.y < nt.y ) | |
for( y = ns.y; y <= nt.y; ++y ) isWall[x][y] = true; | |
else | |
for( y = nt.y; y <= ns.y; ++y ) isWall[x][y] = true; | |
} | |
} | |
s = Point( x_r2d(s.x), y_r2d(s.y) ); | |
t = Point( x_r2d(t.x), y_r2d(t.y) ); | |
/* | |
for( x = 0; x <= xlen+1; ++x ) { | |
for( y = 0; y <= ylen+1; ++y ) { | |
if( s.x == x && s.y == y ) putchar('S'); | |
else if( t.x == x && t.y == y ) putchar('T'); | |
else { | |
if( isWall[x][y] ) putchar('W'); | |
else putchar('_'); | |
} | |
} | |
putchar('\n'); | |
} | |
*/ | |
//for( i = 1; i <= xlen; ++i ) printf( "%d ", dx[i] ); putchar('\n'); | |
//for( i = 1; i <= ylen; ++i ) printf( "%d ", dy[i] ); putchar('\n'); | |
} | |
const bool valid( const Point &p ) | |
{ | |
return (0 <= p.x && p.x <= xlen+1 && 0 <= p.y && p.y <= ylen+1); | |
} | |
void dfs( const Point &now ) | |
{ | |
int i; | |
Point next; | |
//printf( "#dfs (%d,%d)\n", now.x, now.y ); | |
vis[now.x][now.y] = true; | |
for( i = 0; i <= 3; ++i ) { | |
next = now.go(i); | |
if( valid(next) && !vis[next.x][next.y] ) { | |
if( next == t ) { | |
over = true; | |
//printf( "(%d,%d) is over!\n", next.x, next.y ); | |
return ; | |
} else if( isWall[next.x][next.y] ) { | |
if( inWQ[next.x][next.y] ) continue; | |
inWQ[next.x][next.y] = true; | |
wq.push( State(next,1) ); | |
} else { | |
dfs( next ); | |
} | |
} | |
} | |
} | |
int bfs( void ) | |
{ | |
int wlen = 0, i; | |
State now, next; | |
while( !wq.empty() ) { | |
now = wq.front(); wq.pop(); | |
//printf( "@bfs (%d,%d)\n", now.p.x, now.p.y ); | |
vis[now.p.x][now.p.y] = true; | |
wlen = max( wlen, now.step ); | |
for( i = 0; i <= 3; ++i ) { | |
next = State( now.p.go(i), now.step+1 ); | |
if( valid(next.p) && !vis[next.p.x][next.p.y] ) { | |
if( next.p == t ) { | |
over = true; | |
//printf( "(%d,%d) step %d is over!\n", next.p.x, next.p.y, now.step ); | |
return now.step; | |
} else if( !isWall[next.p.x][next.p.y] ) { | |
if( inNWQ[next.p.x][next.p.y] ) continue; | |
inNWQ[next.p.x][next.p.y] = true; | |
nwq.push(next.p); | |
} else { | |
if( inWQ[next.p.x][next.p.y] ) continue; | |
wq.push( next ); | |
} | |
} | |
} | |
} | |
return wlen; | |
} | |
void solve( void ) | |
{ | |
int i; | |
//printf( "! s(%d,%d) t(%d,%d)\n", s.x, s.y, t.x, t.y ); | |
int wlen; | |
nwq.push(s); | |
while( !over ) { | |
while( !nwq.empty() ) { | |
dfs( nwq.front() ); | |
nwq.pop(); | |
} | |
if( over ) break; | |
ans += bfs(); | |
} | |
//puts("over"); | |
} | |
void output( void ) | |
{ | |
printf( "City %d\n", ++ti ); | |
printf( "Peter has to cross %d streets\n", ans ); | |
} | |
int main( void ) | |
{ | |
int i; | |
while( scanf( "%d", &n ) == 1 && n ) { | |
init(); | |
solve(); | |
output(); | |
} | |
return 0; | |
} |
沒有留言:
張貼留言
任何意見都樂意傾聽