題意:
(from luckycat)
解法: 因為UVA的時限到10秒...,所以可以用簡單一點的方法,會產生末位數的 0 ,必定是 2 跟 5 的因數相乘,所以就檢查 N 到 (N-M+1) 的 2、5 因數個數的差,同時將剩下來的數累乘 mod 10,最後補上 2 或 5 的剩餘次方數 mod 10 即是答案。但是UVA跑完測資要4秒...。
另一個較快的方法,詳細說明在此 http://blog.sina.com.cn/s/blog_64018c250100u59n.html。
TAG: Math
注意:
程式碼:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Tittle: 10212 - The Last Non-zero Digit. | |
* Author: Cheng-Shih, Wong | |
* Date: 2015/05/19 | |
*/ | |
// include files | |
#include <iostream> | |
#include <cstdio> | |
#include <cstring> | |
using namespace std; | |
// definitions | |
#define FOR(i,a,b) for( int i=(a),_n=(b); i<=_n; ++i ) | |
#define clr(x,v) memset( x, v, sizeof(x) ) | |
typedef long long ll; | |
// declarations | |
ll n, m; | |
ll ans, k; | |
// functions | |
// main function | |
int main( void ) | |
{ | |
ll u, v, tmp; | |
// input | |
while( scanf( "%lld%lld", &n, &m )==2 ) { | |
// solve | |
ans = 1LL; | |
k = 0LL; | |
for( u=n, v=(n-m+1); u>=v; --u ) { | |
tmp = u; | |
while( (tmp%2LL) == 0 ) { | |
tmp /= 2LL; | |
++k; | |
} | |
while( (tmp%5LL) == 0 ) { | |
tmp /= 5LL; | |
--k; | |
} | |
ans = (ans*tmp)%10LL; | |
} | |
if( k > 0 ) { | |
for( u=1; u<=k; ++u ) | |
ans = (ans*2LL)%10LL; | |
} else { | |
for( u=1; u<=-k; ++u ) | |
ans = (ans*5LL)%10LL; | |
} | |
printf( "%lld\n", ans ); | |
} | |
return 0; | |
} |
沒有留言:
張貼留言
任何意見都樂意傾聽